Microbiological Safety of Leafy Green Vegetables:
A Bibliography

Complied by:
Robert L. Buchanan, Ph.D.
Center for Food Safety and Security Systems
College of Agriculture and Natural Resources
University of Maryland
0119 Symons Hall
College Park, Maryland, USA

December 3, 2020

Harber, A.H. and Luippold, H.J. Dormancy from gamma-irradiation of lettuce seeds.

Shapiro, J.E. and Holder, I.A. Effect of antibiotic and chemical dips on the microflora of

Lynt, R.K.Jr. Survival and recovery of enterovirus from foods. Applied Microbiology

Kominos, S.D. et al. Introduction of Pseudomonas aeruginosa into a hospital via

Crisan, E.V. Effects of aflatoxin on germination and growth of lettuce. Applied

Konowalchu, J. et al. Concentration of enteric viruses from water with lettuce extract.

Ercolani GL (1976). Bacteriological quality assessment of fresh marketed lettuce and

Wright, C. et al. Enterobacteriaceae and Pseudomonas aeruginosa recovered from

Priepeke, P.E. et al. Refrigerated storage of prepackaged salad vegetables. Journal of

Wasteson, Y. et al. Analysis of faecal samples from wild animals for verocytotoxin producing *Escherichia coli* and *E. coli* O157. Veterinary Record 144:646-647. 1999.

Li, Y. et al. Survival and growth of Escherichia coli O157:H7 inoculated onto cut lettuce before or after heating in chlorinated water, followed by storage at 5 or 15°C. Journal of Food Protection 64:305-309. 2001.

Szabo, E.A. et al. Assessment of control measures to achieve a food safety objective of less than 100 cfu of *Listeria monocytogenes* per gram at the point of consumption for fresh precut iceberg lettuce. Journal of Food Protection 66:256-264. 2003.

Islam, M. et al. Persistance of *Salmonella enterica* serovar Typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathogens and Disease 1:27-35. 2004.

Erdogrul, O. and Sener, H. The contamination of various fruit and vegetable with *Enterobius vermicularis*, *Ascaris* eggs, and *Entamoeba histolytica* cysts and *Giardia* cysts. Food Control 16:559-562. 2005.

Wei, H. et al. Combination of warm water and hydrogen peroxide to reduce the numbers of Salmonella Typhimurium and Listeria innocua on field salad (Valerianella locusta). European Food Research and Technology 221:180-186. 2005.

Himathongkham, S. et al. Recirculating immunomagnetic separation and optimal enrichment conditions for enhanced detection and recovery of low levels of Escherichia coli O157:H7 from fresh leafy produce and surface water. Journal of Food Protection 70:2717-2724. 2007.

Chua, T. and Bhagwat, A.A. A rapid and simple DNA extraction procedure to detect Salmonella spp. and Listeria monocytogenes from fresh produce using real-time PCR. Food Analytical Methods 2:96-101. 2009.

Kroupitski, Y. et al. Internalization of *Salmonella enterica* in leaves is induced by light and involves chemotaxis and penetration through open stromata. Applied and Environmental Microbiology 75:6076-6086. 2009.

Ganesh, V. et al. Electrostatic sprays of food-grade acids and plant extracts are more effective than conventional sprays in decontaminating *Salmonella Typhimurium* on spinach. Journal of Food Science 75:M574-M579. 2010.

Olmez, H. and S.D. Temur. Effects of different sanitizing treatments on biofilms and attachment of *Escherichia coli* and *Listeria monocytogenes* on green leaf lettuce. LWT-Food Science and Technology 43:964-970. 2010.

Ravishankar, S. et al. Assessing the cross contamination and transfer rates of *Salmonella enterica* from chicken to lettuce under different food-handling scenarios. Food Microbiology 27:791-794.

Ongeng, D. et al. Rhizosphere effect on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure-amended soil during cabbage
(Brassica oleracea) cultivation under tropical field conditions in Sub-Saharan Africa. International Journal of Food Microbiology 149:133-142.

Bae, Y.-M. et al. Growth and predictive model of Bacillus cereus on blanched spinach with or without seasoning at various temperatures. Food Science and Biotechnology 21:503-508. 2012.

Harris, L.J. et al. A framework for developing research protocols for evaluation of microbial hazards and controls during production that pertain to the quality of agricultural water contacting fresh produce that may be consumed raw. Journal of Food Protection 75:2251-2273. 2012.

Kisluk, G. et al. Quantification of low and high levels of Salmonella enterica serovar Typhimurium on leaves. LWT-Food Science and Technology 45:36-42. 2012.

Vierheilig, J. et al. *Clostridium perfringens* is not suitable for the indication of fecal pollution from ruminant wildlife but is associated with excreta from nonherbivorous animals and human sewage. Applied and Environmental Microbiology 79:5089-5092. 2013.

Lee, N.Y. et al. Decontamination efficacy of neutral electrolyzed water to eliminate indigenous flora on a large-scale of cabbage and carrot both in the laboratory and on a real processing line. Food Research International 64:234-240. 2014.

Park, S. et al. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic *Escherichia coli* at the preharvest stage. Applied and Environmental Microbiology 80:2504-2515. 2014.

Srey, S. et al. Reduction effect of the selected chemical and physical treatments to reduce *L. monocytogenes* biofilms formed on lettuce and cabbage. Food Research International 62:484-491. 2014.

Giangaspero, A. et al., Molecular detection of Cyclospora in water, soil, vegetables and humans in southern Italy signals a need for improved monitoring by health authorities. International Journal of Food Microbiology 211:95-100. 2015.

Lee, C.-C. et al. Role of cellulose and colanic acid in attachment of Shiga toxin-producing *Escherichia coli* to lettuce and spinach in different water hardness environments. Journal of Food Protection 78:1461-1466. 2015.

Park, S. et al. Multifactorial effects of ambient temperature, precipitation, farm management, and environmental factors determine the level of generic *Escherichia coli* contamination on preharvested spinach. Applied and Environmental Microbiology 81:2635-2650. 2015.

Simko, I. et al. Downy mildew disease promotes the colonization of Romaine lettuce by *Escherichia coli* O157:H7 and *Salmonella enterica*. BMC Microbiology 15:19. 2015. (Online)

Van Haute, S. et al. Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetable was water applied on peracetic acid combined with lactic acid. International Journal of Food Microbiology 208:102-113. 2015.

Callahan, M.T. et al. Metrics proposed to prevent the harvest of leafy green crops exposed to floodwater contaminated with *Escherichia coli*. Applied and Environmental Microbiology 82:3746-3753. 2016.

Hohweyer, J. et al. Simultaneous detection of the protozoan parasites Toxoplasma, Cryptosporidium and Giardia in food matrices and their persistence on basil leaves. Food Microbiology 57:36-44. 2016.

Santos, M.I.S. et al. Preliminary study on the effect of fermented cheese whey on *Listeria monocytogenes, Escherichia coli* O157:H7, and *Salmonella* Goldcoast

Alegbeleye, O.O. et al. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiology 73:177-108. 2018.

Allende, A. et al. Quantitative microbial exposure modelling as a tool to evaluate the impact of contamination level of surface irrigation water and seasonality on fecal hygiene indicator E. coli in leafy green production. Food Microbiology 75:82-89. 2018.

Becker, B. et al. Microbial contamination of organically and conventionally produced fresh vegetable salads and herbs from retail markets in southwest Germany. Foodborne Pathogens and Disease 16:269-275. 2019.

Han, L., et al. Viable but nonculturable Escherichia coli O157:H7 and Salmonella enterica in fresh produce: Rapid determination by loop-mediated isothermal
amplification coupled with a propidium monazide treatment. Applied and Environmental Microbiology 86:e02566-19. 2020,

Song, Y. and Fan, X. Cold plasma enhances the efficacy of aerosolized hydrogen peroxide in reducing populations of Salmonella Typhimurium and Listeria innocua on grape tomatoes, apples, cantaloupe and romaine lettuce. Food Microbiology 87:103391. 2020.

