Microbiological Safety of Leafy Green Vegetables: A Bibliography

Complied by:

Robert L. Buchanan, Ph.D.
Center for Food Safety and Security Systems
College of Agriculture and Natural Resources
University of Maryland
0119 Symons Hall
College Park, Maryland, USA

September 1, 2015

Cherry, D.P. Improving the safety of fresh produce with antimicrobials. *Food Technology* 53(11):54-60. 1999.

Wasteson, Y. et al. Analysis of faecal samples from wild animals for verocytotoxin producing Escherichia coli and E. coli O157. Veterinary Record 144:646-647. 1999.

Li, Y. et al. Survival and growth of Escherichia coli O157:H7 inoculated onto cut lettuce before or after heating in chlorinated water, followed by storage at 5 or 15°C. Journal of Food Protection 64:305-309. 2001.

Szabo, E.A. et al. Assessment of control measures to achieve a food safety objective of less than 100 cfu of *Listeria monocytogenes* per gram at the point of consumption for fresh precut iceberg lettuce. Journal of Food Protection 66:256-264. 2003.

Islam, M. et al. Persistence of *Salmonella enterica* serovar Typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathogens and Disease 1:27-35. 2004.

Franz, E. et al. Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure,

Wei, H. et al. Combination of warm water and hydrogen peroxide to reduce the numbers of *Salmonella Typhimurium* and *Listeria innocua* on field salad (*Valerianella locusta*). European Food Research and Technology 221:180-186. 2005.

Himathongkham, S. et al. Recirculating immunomagnetic separation and optimal enrichment conditions for enhanced detection and recovery of low levels of *Escherichia coli* O157:H7 from fresh leafy produce and surface water. *Journal of Food Protection* 70:2717-2724. 2007.

Ingram, D.T. and Milner, P.D. Factors affecting compost tea as a potential source of *Escherichia coli* and *Salmonella* on fresh produce. *Journal of Food Protection* 70:828-834. 2007.

Chua, T. and Bhagwat, A.A. A rapid and simple DNA extraction procedure to detect \textit{Salmonella} spp. and \textit{Listeria monocytogenes} from fresh produce using real-time PCR. Food Analytical Methods June (on line) 2008.

Kroupitski, Y. et al. Internalization of *Salmonella enterica* in leaves is induced by light and involves chemotaxis and penetration through open stromata. Applied and Environmental Microbiology 75:6076-6086. 2009.

Olmez, H. and S.D. Temur. Effects of different sanitizing treatments on biofilms and attachment of *Escherichia coli* and *Listeria monocytogenes* on green leaf lettuce. LWT-Food Science and Technology 43:964-970. 2010.

Ravishankar, S. et al. Assessing the cross contamination and transfer rates of *Salmonella enterica* from chicken to lettuce under different food-handling scenarios. Food Microbiology 27:791-794.

Tian, P. et al. A simple method to recover norovirus from fresh produce with large sample size by using histo-blood group antigen-conjugated to magnetic beads in a

Abadias, M. et al. Growth potential of *Escherichia coli* O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions. *Food Control* 27:37-44. 2012.

Bae, Y.-M. et al. Growth and predictive model of *Bacillus cereus* on blanched spinach with or without seasoning at various temperatures. *Food Science and Biotechnology* 21:503-508. 2012.

Harris, L.J. et al. A framework for developing research protocols for evaluation of microbial hazards and controls during production that pertain to the quality of agricultural water contacting fresh produce that may be consumed raw. Journal of Food Protection 75:2251-2273. 2012.

Kisluk, G. et al. Quantification of low and high levels of *Salmonella enterica* serovar Typhimurium on leaves. LWT-Food Science and Technology 45:36-42. 2012.

Su, X. and D’Souza, D.H. Reduction of *Salmonella Typhimurium* and *Listeria monocytogenes* on produce by trisodium phosphate. *LWT-Food Science and Technology* 45:221-225. 2012.

Vierheilig, J. et al. *Clostridium perfringens* is not suitable for the indication of fecal pollution from ruminant wildlife but is associated with excreta from nonherbivorous animals and human sewage. Applied and Environmental Microbiology 79:5089-5092. 2013.

Lee, N.Y. et al. Decontamination efficacy of neutral electrolyzed water to eliminate indigenous flora on a large-scale of cabbage and carrot both in the laboratory and on a real processing line. Food Research International 64:234-240. 2014.

Salgado, S.P. et al. Quality of Iceberg (Lactuca sativa L.) and Romaine (L. sativa L. var. longifolia) lettuce treated by combinations of sanitizer, surfactant, and ultrasound. LWT-Food Science and Technology 56:261-268. 2014.

Bovo, F. et al. Fate of *Salmonella enterica* in a mixed ingredient salad containing lettuce, cheddar cheese, and cooked chicken meat. *Journal of Food Protection* 78:491-497. 2015.

Giangaspero, A. et al. Molecular detection of *Cyclospora* in water, soil, vegetables and humans in southern Italy signals a need for improved monitoring by health authorities. International Journal of Food Microbiology 211:95-100. 2015.

Lee, C.-C. et al. Role of cellulose and colanic acid in attachment of Shiga toxin-producing *Escherichia coli* to lettuce and spinach in different water hardness environments. Journal of Food Protection 78:1461-1466. 2015.

